

Building Data Workflows for Neuroscience and Al

Infrastructure × Operations × Collaboration

Dimitri Yatsenko, PhD Thinh Nguyen, PhD

Copyright 2024 DataJoint Inc. All Rights Reserved

The Future of Research Operations

operational excellence - data integrity - governance - quality control - Al readiness
DataJoint Platform - computational workflows, future developments
DataJoint Elements - standardized workflows for neurophysiology
Data Publishing - DANDI & EMBER

MICrONS Project

Data access and analysis - DANDI, DataJoint, VORTEX

Analysis collaboration with Neuromatch, Stanford, led by Nima Dehghani MIT

Al in Research Operations

 $\text{Co-Pilot} \rightarrow \text{Co-Scientist} \rightarrow \text{Co-Strategist}$

DataJoint: A Journey of Collaboration

*See <u>The U.S. Government Launches a \$100-Million "Apollo Project of the Brain"</u>, Scientific American (Mar. 8, 2016); <u>A milestone map of mouse-brain connectivity</u> reveals challenging new terrain for scientists, Nature (Apr. 15, 2024).

OUR MISSION

To create a healthy operating environment for science that yields rapid, reproducible findings and aggregates data into a foundation for breakthrough discoveries.

Based on first principles of science & engineering.

SciOps Requirements "SciOps"≅ DevOps for Science

Reproducibility

 Requires relational integrity among data, code, and process.

Flexibility + Resilience to Change

Requires unified management of data, code, and process.

The Computational Database

A new database model

Express a study as a *pipeline* of data transformations.

Computational Schema

Yatsenko et al (2015) https://arxiv.org/abs/1807.11104 FOUNDATIONS

Demo

Architecture

Open Source + Infrastructure + Operations

Open-source core

A flexible open standard for scientists to define all aspects of a study – so it can be **understood**, **validated**, **shared**, and **automed**.

Captures: code + data + dependencies

Operating in 100+ labs

https://github.com/datajoint/datajoint-specs https://github.com/datajoint/datajoint-python

Architecture

Open Source + Infrastructure + Operations

Open-source core

A flexible open standard for scientists to define all aspects of a study — so it can be **understood**, **validated**, **shared**, and **automed**.

Functional extensions for efficiency

Integration, automation, interfaces, security & compliance, sharing and publishing.

Open Source + Infrastructure + Operations

Open-source core

A flexible open standard for scientists to define all aspects of a study — so it can be **understood**, **validated**, **shared**, and **automed**.

Functional extensions for efficiency

Integration, automation, interfaces, security & compliance, sharing and publishing.

Al integration to expand capability

Data intelligence, coding assistance, knowledge tracking, writing assistance, strategy

A full-stack operating platform for science.

Research teams define their pipelines and workflows

DataJoint Elements s hde dze weikfliwer rieurphilol y https://docs.datajoint.com/elements/

Modular pipelines

https://docs.datajoint.com/elements/

Common language

A flexible open standard for scientists to define all aspects of a study – so it can be **understood**, **validated**, **shared**, and **automed**.

Standardized modules

Validated open-source modules. Integration, interfaces, customization

Uniform processes

Navigation, automation, queries, visualization, sharing, publishing

Multimodal data pipeline

▲ DataJoint

Open-source tools and informatics resources

Community, licensing, governance.

Element DeepLabCut

https://github.com/DeepLabCut/DeepLabCut

Video Management Analysis Model Training Pose Estimation

> Mesoscale Activity Project Mathis Lab @ EPFL Lu Lab @ Indiana U Rose Lab @ Bonn U Moser Group

Projects

Keypoint-MoSeq

https://keypoint-moseq.readthedocs.io

Unsupervised machine learning algorithm segmenting continuous behavior into "syllables": e.g. rear, turn and pause

1. Model Training 2. Model Inference

Article Open access Published: 12 July 2024

Keypoint-MoSeq: parsing behavior by linking point tracking to pose dynamics

https://github.com/datajoint/element-moseq

DataJoint Elements

MoSeq Model Training pipeline

https://github.com/datajoint/element-moseq

DataJoint Elements

MoSeq Model Inference pipeline

Standard quality control for every modality – and compression!

Uniform QC metrics for data quality across all data modalities

Protocol | Published: 17 March 2025

Standardized measurements for monitoring and comparing multiphoton microscope systems

▶ DataJoint

Open Data In Neurophysiology: Advancements, Solutions & Challenges Colleen J. Gillon^{†,1} Cody Baker^{†,2} Ryan Ly^{†,3} Edoardo Balzani,⁴ Bingni W. Brunton,⁵ Manuel Schottdorf,⁶ Satrajit Ghosh,⁷ and Nima Dehghani^{7,8}

Open Data in Neurophysiology (2023) Ecosystem

FIG. 1: The ecosystem of open source neurophysiology toolkits presented or discussed during ODIN 2023. See Table I for more information about each toolkit.

EMBER Multimodal Data Storage Strategy

Updated Plan

*Deidentified

We will be working directly with teams to assess and guide what data can be placed in DANDI

The MICrons Project

An unprecedented dataset of high resolution anatomical images of individual cells in mouse visual cortex, mapped on to their responses. This integrated view of function and structure lays a foundation for discovering the computational bases of cortical circuits.

9 April 2025

MICrONS: \$100M "Apollo Project of the Brain."

- Structure / function link
- Neural Data Access hosting

PRINCETON UNIVERSITY

Neuroanatomy. Serial-section electron microscopy images the same cubic millimeter of visual cortex.

Connectome. Convolutional nets align the image slices to reconstruct neurons and synapses in 3D and segment cells by class.

technology to look into organization of

Andreas Tolias

75,000 functional neurons

500,000 synapse junctions

2 petabytes of data

Data types available as data resource

FUNCTIONAL DATA

ELECTRON MICROSCOPY MAGERY

FUNCTIONAL -STRUCTURAL CO-REGISTRATION

CELL SEGMENTATION

CELL MESHES

SYNAPSE CONNECTIVITY

NUCLEUS SEGMENTATION

CELL TYPES

MICrONS Data

https://www.microns-explorer.org

https://datajoint.com/microns

Visual Observatory of Cortex (VORTEX) https://www.microns-explorer.org/vortex

MICrONS Visual Stimuli

"Monet"

"Trippy"

Videos

Receptive fields Orientation tuning Direction tuning

> Modeling Validation Ethological relevance

Responsiveness Signal correlations

> ML models "Digital twin"

Accessing Physiology Data

1. (Difficult) Download the SQL data

- Set up your own SQL server, load the data
- Access with the DataJoint API

2. (Easier) Connect to the database instance hosted by DataJoint.com

- Access with public credentials using the DataJoint API
- Complete tutorial in DevContainer Codespaces: https://github.com/datajoint/microns_phase3_nda/

3. (Easiest) Download NWB files from DANDI Archive https://doi.org/10.48324/dandi.000402/0.230307.2132

4. (Pro) Work on a complete data pipeline from raw data Analysis collaboration: DataJoint + Neuromatch + Stanford

Analysis Collaboration

***D. YATSENKO**¹, P. FAHEY², T. MUHAMMAD³, M. SHAKIBA⁴, R. ROKNI⁴, M. MOHAMMADI⁴, N. DEHGHANI⁵, A. S. TOLIAS²

neuromatch

IIIii

Synthetic stimuli divide neuronal populations into two functional circuits

Stanford

University

The NeuroAl Future

SCIOPS

New Discipline: SciOps

Skills + Standards + Systems

DataJoint

APL JOHNS HOPKINS

DARTMOUTH **INSCOPIX** CHARITÉ **UC** San Diego

School of Medicine

SCIOPS: ACHIEVING PRODUCTIVITY AND RELIABILITY IN DATA-INTENSIVE RESEARCH

A PREPRINT

Erik C. Johnson^{1,a} Thinh T. Nguyen² Montgomery Kosma² Benjamin K. Dichter³ Kabilar Gunalan^{2,5} Frank Zappulla⁴ Kristen Ratan⁸ Yaroslav O. Halchenko⁶ Nicholas J. Edwards⁹ Shay Q. Neufeld7 Michael Schirner¹²⁻¹⁶ Susanne Ressl¹⁰ Sarah R. Heilbronner¹¹ Petra Ritter¹²⁻¹⁶ Brock Wester¹ Maryann E. Martone¹⁷ Satrajit Ghosh^{5,16} Franco Pestilli¹⁸ Dimitri Yatsenko^{2,b} ¹ Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA 2 DataJoint Inc., Houston, TX, USA 3 CatalystNeuro, Benicia, CA, USA 4 Digital R&D Creation Center, Pfizer Inc., USA ⁵ McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA 6 Center for Open Neuroscience, Department of Psychological and Brain Sciences, Dartmouth College, New Hampshire, USA 7 Inscopix, a Bruker company, Mountain View, CA, USA 8 Strategies for Open Science (Stratos), Santa Cruz, CA, USA 9 Potato Inc., San Diego, CA, USA 10 Department of Neuroscience, University of Texas at Austin, Austin, TX 11 Neurosurgery, Baylor College of Medicine, Houston, TX ¹² Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, Berlin, Germany 13 Department of Neurology with Experimental Neurology, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany 14 Bernstein Focus State Dependencies of Learning and Bernstein Center for Computational Neuroscience, Berlin, Germany 15 Einstein Center for Neuroscience Berlin, Berlin, Germany 16 Einstein Center Digital Future, Berlin, Germany ¹⁶ Department of Otolaryngology, Harvard Medical School, Boston, MA, USA ¹⁷ Department of Orona rigorogy, rial value metasar actional, Boston, Boston, and Con-17 Department of Neurosciences, University of California San Diego, La Jolla, CA, USA ¹⁸ Department of Psychology, University of Texas Austin, Austin, TX, USA "erik.c.johnson@jhupl.edu; bdimitri@datajoint.com"

September 22, 2024

ABSTRACT

Scientists are increasingly leveraging advances in instruments, automation, and collaborative tools sciencias are increasingly revenging infrances in instruments, automation, and communities com-to scale up their experiments and research goals, leading to new bursts of discovery. Various scito search up that experiments and research goals, basing to not of the order of the tenno deseptitos menoring reactionentes have anopted set technologies to enhance constraintion, reproducibility, and automation. Drawing inspiration from advancements in the software industry, reproductionly, and automation. Leaving neptons of the association of the second secon we present a toward to endance the relationtry and scanability of scientific operations for diverse research teams tackling large and complex projects. We introduce a five-level Capability Maturity research reams tacking large and compare projects. The introduce a treated comparing something Model describing the principles of rigorous scientific operations in projects ranging from small-scale integration operating the principles of rigorous scientific operations in projects ranging from manassance exploratory studies to large-scale, multi-disciplinary research endeavors. Achieving higher levels of operational maturity necessitates the adoption of new, technology-enabled methodologies, which we

Our SciOps paper is under review by Nature Methods.

NeuroAl requires SciOps maturity.

Closed-loop system from hypothesis to verification

Al requires mature scientific operations

SciOps: A Comprehensive Platform

Productivity through automation

- Ingest and store
- Prepare and standardize
- FAIR
- Flexible queries
- Collaborate, controlled sharing, and publish

AI Enablement

- Intuitive UI and common language
- Analyze and build models
- Integrate pipelines, tools (existing and 3rd party)
- Dynamic and flexible
- Compute orchestration

Strong Governance

- System of record
- Code + data + dependencies + environment
- Data Integrity enforced and transparent
- Reproducibility
- Protect IP
- Well documented processes and transformations

Closed-loop neuroscience with live ML modeling.

AI embedding requires mature operations

courtesy Prof. Andreas Tolias

The Three Al Partners

A synergistic framework of Al collaborators. Click on any layer to learn more.

Level 2: Al Co-Visionary

Strategy & Vision

Guides long-term research trajectory, identifies funding and partnership opportunities, and helps map the strategic impact of scientific discoveries.

Level 1: Al Co-Scientist

Creativity & Exploration

Acts as an intellectual partner, generating novel hypotheses, synthesizing literature, and assisting in manuscript preparation through a closed-loop discovery process.

Level 0: Al Co-Pilot

Rigor & Precision

Ensures absolute data integrity by translating natural language into precise, validated queries and orchestrating complex analysis workflows with perfect reproducibility.

- FutureHouse.org
- NovelSeek
- ReadySetPotato.com
- Google Co-Scientist
- Microsoft Discovery Platform
- HypSynth

Areas for collaboration

Restoring Gold Standard Science

Executive Orders May 23, 2025

NIH AI: <u>NOT-OD-25-117</u>

• Operational excellence:

governance + infrastructure + operations + dev support + training

- Al-powered closed-loop science: Grant Opportunities
- Industry sponsored research
- Research communication and publishing: data + computation
- Technology dissemination & commercialization. Software licensing.

THANK YOU

A New Operating System for Science